

NOVA University of Newcastle Research Online

nova.newcastle.edu.au

Lucock, Mark; Jones, Patrice; Martin, Charlotte; Yates, Zoe; Veysey, Martin; Furst, John; Beckett, Emma. "Photobiology of vitamins". Published in *Nutrition Reviews* Vol. 76, Issue 7, p. 512-525 (2018).

Available from: <u>http://dx.doi.org/10.1093/nutrit/nuy013</u>

This is a pre-copyedited, author-produced version of an article accepted for publication in the *Nutrition Reviews* following peer review. The version of the above record is available online at: http://dx.doi.org/10.1093/nutrit/nuy013

Accessed from: http://hdl.handle.net/1959.13/1392616

1	
2	The Photobiology of Vitamins.
3	
4	
5	
6 7	Mark Lucock ¹ *, Patrice Jones ¹ , Charlotte Martin ¹ , Zoe Yates ² , Martin Veysey ³ , John Furst ⁴ , Emma Beckett ^{1,5}
8	
9	
10	
11	
12 13 14	¹ School of Environmental & Life Sciences, and ² Biomedical Sciences & Pharmacy, and ⁴ Maths & Physical Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW 2258, Australia.
15	³ Hull-York Medical School, University of York, Heslington, York, YO10 5DD, UK.
16	⁵ School of Medicine & Public Health, University of Newcastle, NSW2308, Australia
17	
18	
19	
20	
21	
22	Ph: +61 2 4348 4109
23	Fax: +61 2 4348 4145
24	*Corresponding author: Mark.Lucock@newcastle.edu.au
25	
26	KEY WORDS: Photobiology; Vitamins; Molecular Nutrition

27 ABSTRACT

28	This review explores contemporary ideas on the relationship between light exposure and
29	vitamin biology. Nutritional biochemistry has long recognised the relationship between
30	vitamins A and D and light exposure, but in recent years, other vitamins have also been
31	implicated in a photo-responsive biology that influences health, wellbeing and even
32	evolutionary origins.
33	Interaction between light and vitamins can modify genotype-phenotype relationships across
34	the lifecycle, offering interesting new molecular explanations of relevance to wide aspects
35	of human biology. This review examines both well-established and emerging ideas on
36	vitamin photobiology in the context of: 1)' <i>light responsiveness</i> '-vitamin D (skin
37	photosynthesis), vitamin A (vision), vitamin B3 (genomic damage response); 2)' <i>UV/light</i>
38	vulnerability'-folate, vitamins B1, B2, B12, D (all potentially degraded); 3)'UV
39	<i>filtering/protective actions</i> '-carotenoids, vitamins C, E (act as antioxidants and/or natural
40	sunscreens); 4)' Role in UV-related genomic regulation, maintenance and repair' -folate,
41	vitamins A, B3, C, D, E and carotenoids; 5)' <i>Role in a range of light signalling/transduction</i>
42	pathways'-vitamins A, B2, B12, D and folate; and finally 6)'Links to the evolution of
43	UV/light adaptive phenotypes'-folate, vitamin D.
44	
45	INTRODUCTION

Generations of students have learnt that vitamins are organic compounds required in small
amounts for maintaining metabolic integrity, and that with the exceptions of vitamin D and
niacin, they cannot be synthesized in the body but must be provided in the diet. The

49	important message has always been that overt deficiency results in specific diseases that
50	can only be corrected by restoration of the vitamin to the diet. Today, researchers are
51	gaining new perspectives on vitamin biology that go well beyond this traditional view.
52	The purpose of this review is to present contemporary paradigms on important
53	relationships between light exposure and vitamin biology. The vital relationship between
54	vitamins D and A, and light exposure have long been recognised, ^{1, 2} but in recent years,
55	many more vitamins have also been implicated in a light responsive biology that impacts
56	health, and even human origins.
57	Since the 1990s, clinical research involving vitamins has often been considered in a
58	nutritional genetics (nutrigenetic) context, although more recently the broader exposome
59	(totality of environmental exposures through the lifecycle) has been investigated for
60	additional relevant factors. ^{3, 4} UV radiation in particular has been investigated as a factor
61	that interacts with vitamins and their dependent genes to influence phenotype. Indeed,
62	evidence now points to light (wavelength, duration and life stage) as a critical environmental
63	component that interacts with nutritional agents to modify genotype-phenotype
64	relationships across the lifecycle, offering up interesting new molecular explanations of
65	relevance to wide aspects of human biology. This review will examine these as separate
66	biochemical/biophysical constructs (Figure 1 provides an integrated overview of how
67	vitamins respond to light to support the reviews narrative).

68 Signalling and Transduction

Typically, vitamins A (vision) and D (skin photosynthesis and VDR activation) are the vitamins
most obviously linked to light mediated signal transduction pathways. However, folate in

71	the form of its reduced 5,10-methenyl coenzyme, and vitamin B_2 (in the form of flavin
72	adenine dinucleotide) are also recognised as chromophores that facilitate
73	photoreception/light transduction mechanisms. ⁵ These two B-vitamins have been
74	implicated in the maintenance of circadian rhythms, ^{4, 5} which are endogenous oscillations
75	synchronized (photo-entrained) by the natural night-day cycle which has a periodicity of
76	approximately 24 hours. ⁶
77	This biological clock is regulated by input through the eye's retinal photoreceptor cells. Most
78	notably, visual holoproteins such as rhodopsin (11-cis-retinal and opsin) are not used in
79	circadian photoreception, but retinal cryptochromes and melanopsin are thought to
80	function as circadian photoreception pigments. ⁷ Cryptochromes are fascinating because
81	they contain both a flavin (FAD) and folate (5,10-methenyl-H $_4$ folate) as light gathering
82	cofactors, and are integral to maintaining periodicity in animals and plants. They are blue-
83	light photoreceptors found in the ganglion cell layer of the retina and transduce light stimuli
84	through to the master circadian clock in the suprachiasmatic nucleus.
85	Although there is still much to learn, it has been shown that purified human cryptochrome 2
86	(hCRY2) exhibits a fluorescence profile consistent with the presence of both folate and flavin
87	cofactors, ⁵ although firm evidence of photoreception in mammalian cryptochromes remains
88	indirect. ⁸ CRY1 and CRY2 are 73% homologous in all organisms and absorb light in the 350 to
89	450 nm wavelength range. In this synergistic B-vitamin partnership, folate is effectively
90	functioning as a light gathering antenna, whilst FAD facilitates a redox reaction. The full
91	mechanism following exposure to blue-light photons proceeds by way of excitation of 5,10-
92	methenyl-H ₄ folate. An electron is then transferred to the reduced catalytic flavin (FADH ⁻)
93	and then on to CRY1 or CRY2. ^{9, 10} This system seems highly adaptive, as in the plant

94	kingdom, folate-containing cryptochromes regulate blue-light dependent growth; in
95	bacteria, insects, and amphibians they stimulate the activity of enzymes that repair
96	ultraviolet (UV)-induced DNA damage. In mammals, as indicated above, they regulate the
97	circadian clock.
98	Without doubt, circadian timing is a key mechanism that regulates physiological processes
99	like feeding behaviour and energy metabolism via dietary cues and light-activated
100	transcription of key clock genes. ^{11, 12} Protein interaction network analysis for gene products
101	linked to clock components reveals that aspects of folate metabolism, the cell cycle and
102	hedgehog and insulin signalling are overrepresented. ¹³ One therefore might reasonably
103	assume that while folate as 5,10-methenyl-H $_4$ folate plays a role in controlling the circadian
104	clock, the clock mechanism in turn controls folate homeostasis.
105	Vitamin A as 11- <i>cis</i> -retinal, be it derived as a preformed dietary vitamin or as a pro-vitamin
106	A carotenoid, is a chromophore required for human vision. Human visual perception is
107	facilitated by the absorption of radiation in the 400 to 780nm region of the electromagnetic
108	spectrum, and is a signal transduced at photoreceptors in the retina (retinal pigment
109	epithelium). ² A single photon of visible light converts the 11- <i>cis</i> -retinal chromophore into
110	the 11-trans vitamer. This chromophore exists as a holoprotein; within the retinal pigment
111	epithelium, all-trans-retinol is isomerized to 11-cis-retinol and subsequently is oxidized to
112	form 11-cis-retinal. This reacts with a lysine residue in the opsin protein to form rhodopsin,
113	the key holoprotein responsible for vision, sometimes referred to as visual purple.
114	Rhodopsin is a G protein-coupled receptor system in which the cognate G protein is
115	transducin. ^{14, 15}

116	Opsins shift the absorption characteristics of 11-cis-retinal from the UV into the visible
117	range of light, leading to a broad sensitivity for vision in low light via rod cells or a better
118	refined spectral resolution to distinguish colours in bright light via cone cells. The absorption
119	of light by rhodopsin over a dynamic range from a single photon to in excess of 10 ⁸ photons
120	leads to trans-cis isomerisation and a conformational change in the opsin protein; the
121	retinal is released from its opsin binding pocket and a nerve impulse propagated via a
122	guanine nucleotide amplification cascade leading to closing of a sodium channel. ^{2, 16} The
123	released retinal is then reduced and the resulting trans-retinol joins a pool in the retina
124	(retinal pigment epithelium) for reuse in the visual cycle. Several excellent review articles
125	have recently examined the role of vitamin A in nature, and the visual cycle in particular, ^{2, 17-}
126	¹⁹ including new ideas on protein-protein interactions and the biological stability of the
127	visual cycle. ²⁰

128 Ultimately, the remarkable sensitivity of this visual process is dependent upon rod and cone 129 cell adaptations, a dynamic pupil aperture, the rate of chromophore turnover and processes 130 occurring within retinal neurons. Indeed, in the area of greatest visual acuity and hence greatest metabolic activity around the retinal fovea, each retinal pigment epithelium cell 131 requires 4x10⁸ rhodopsin molecules each day, and it is likely that this high requirement 132 133 explains why this is the first area to deteriorate in age related macular degeneration (AMD).² It also explains why a dietary shortage of vitamin A leads to impaired colour vision 134 135 and dark adaptation, and an inability to see in low light, referred to as night blindness. 136 Interestingly, recent evidence points to a novel endocrine axis regulated by photoperiod and 137 melatonin that utilises vitamin A in its retinoic acid form to contribute to the

138 chronobiological neuroendocrine response in rats.²¹ Indeed, in mammals this specific

139	vitamin A vitamer is thought to regulate several rhythms in the brain and body, involving
140	both daily and seasonal cycles that are entrained by light. In this sense, it is suggested that
141	circannual rhythms play a major function in anticipating the optimal times of year for key
142	seasonal behaviours like hibernation and reproduction, and that nutrients, including vitamin
143	A inform (signal) the "clock" on quality and availability of food as a stochastic environmental
144	variable. ²¹
145	In a more direct signalling role, β -carotene has been shown to interfere with UV- A-induced

146 gene expression by multiple pathways; in non-irradiated human keratinocytes, analysis of

147 gene regulation suggests that physiological levels of β-carotene reduced stress signals,

148 extracellular matrix degradation, and promoted keratinocyte differentiation.²²

The classic light-related vitamin is vitamin D.^{1, 3} The established role of this "UV dependent 149 150 vitamin" is discussed below (section 4), however, it also plays a role in signal transduction in 151 a broad yet highly complex way that is not yet fully understood. This is perhaps unsurprising 152 given that vitamin D in the form of 25-hydroxyvitamin D ($25(OH)D_3$) is a steroid prehormone,²³ and that following its conversion into 1,25-dihydroxyvitamin D 153 $(1,25(OH)_2D_3)$, it, like many hormones ^{(footnote1),} has actions that can play a central role in 154 155 phenotypic plasticity, altering gene expression and hence phenotypic outcomes in response 156 to environmentally originated cues. The key role of vitamin D in signalling relates to its role as a ligand for the vitamin D receptor (VDR) protein, a transcription factor that belongs to 157 the steroid nuclear receptor superfamily.²⁴ The active ligand for the VDR is the 158 159 conformationally flexible secosteroid, 1,25(OH)₂D₃, and the outcome of photosynthesised 160 vitamin D is activation of a nuclear receptor that has high tissue specificity and regulates 161 calcium and phosphorus homeostasis. It also underpins the growth, differentiation and

Page 8 of 44

162	patency of many types of cell that are found in VDR dependent target tissues. ²⁵ Such VDR
163	action can influence gene expression including those of chromatin modifiers and
164	remodelers, and hence can alter DNA methylation profile. ²⁶ However, the VDR gene is itself
165	methylated at key CpG islands, whereby genomic hyper- and hypomethylation decrease and
166	increase expression respectively. ²⁷ This may be one mechanism by which light
167	signals/transduces vitamin D-related biological outcomes; Studies now indicate that a direct
168	link between the early-life exposome and vitamin D/VDR/calcium mediated end points fit a
169	developmental origins link to both infant bone size, height and adult bone mineral
170	density, ²⁸⁻³⁰ indicating the importance of long term signalling potentiated by light as an early
171	life environmental cue. It is now firmly established that the $1,25(OH)_2D_3$ activated VDR
172	potentiates gene expression at the single gene level as well as at the complex gene-network
173	level; diet and light (exposome) as well as genetic and epigenetic mechanisms can therefore
174	interact to modify gene expression in a way that has extremely wide pleiotropic effects. ³¹
175	Ramagopalan and colleagues have shown that 2276 genomic loci are occupied by the VDR
176	and 229 genes have altered expression profiles in response to this vitamin. ³² Furthermore,
177	over 4000 protein coding mRNAs in adipose tissue and white blood cells exhibit seasonally
178	derived expression profiles that invert between northern and southern hemispheres. ³³ With
179	these findings in mind, it is easy to appreciate any potential adaptive benefits of a vitamin D
180	signalling paradigm. Indeed, the idea of pleiotropic effects of vitamin D and its relation to
181	the VDR are manifold, and ultimately are likely to shape the human phenome. It is therefore
182	entirely reasonable to speculate that this "signalling" might have an overarching influence
183	on our ability to adapt to changing environments (light exposure) and or geophysical cycles.

184 Filtering and Protection

185	One of the least well known attributes of vitamins is the role they play in filtering UV light
186	and hence preventing cellular damage. Dietary carotenoids such as the pro-vitamin A
187	nutrient, β -carotene, are long-chain polyene structures that can physically quench
188	electronically excited molecules, and absorb UV light, hence mitigating direct damage to
189	cellular targets, and particularly lipids, proteins and DNA. Carotenoid rich foods slowly
190	assimilated into the skin are therefore photoprotective, although basal dermal defence
191	against UV irradiation varies across the body's epidermis in parallel with a variable local
192	carotenoid concentration. ³⁴⁻³⁶ In one study, universally enhanced carotenoid skin levels
193	were found following dietary supplementation with β -carotene, but were most pronounced
194	in the skin of the forehead, the back (dorsal skin), and palm of the hand. Such intervention
195	has been shown to substantially protect against UV-induced erythema, ^{37, 38} and
196	furthermore, vitamin E may also augment this protective effect of β -carotene. ³⁹
197	Although antioxidant vitamins, including pro-vitamin A carotenoids, are protective against
198	UV challenge, this environmental agent has been shown to lower skin β -carotene in
199	volunteers receiving a total UV dose of around 10,000 mJ/cm ² . ^{39, 40} However, many other
200	phytoprotectants, including other vitamins (and minerals) can also protect skin from sun
201	damage. These include vitamin E (both tocopherols and tocotrienols), vitamin C,
202	polyphenolics (particularly flavonoids), selenium containing structures, and polyunsaturated
203	fatty acids. ^{34, 41, 42} In the context of pro-vitamin A carotenoids, there are a number of ways in
204	which protection from sun damage can occur. These include an increase in optical density,
205	quenching of singlet oxygen and the formation of the retinoic acid vitamer. ⁴³
206	Further critical protective carotenoids include lutein and zeaxanthin; molecular structures
207	that provide blue light filtration, and which bio-accumulate in the eye where they protect

208	the retinal fovea from damaging UV. The protective role of these dietary carotenoids is
209	considered to be a relevant factor in the development of AMD. ⁴⁴ Although lutein acts as an
210	important blue light filter and antioxidant in the retina, it also mediates immunity and
211	inflammation elsewhere in the body, and this may further impact risk for AMD. ⁴⁴
212	It is interesting that as far as the skin surface is concerned, anti-oxidative substances,
213	including carotenoids and vitamin E are secreted via eccrine sweat glands and sebaceous
214	glands onto the epidermal surface. ³⁵ It is therefore unsurprising that skin on the forehead,
215	palms of the hand and back have the highest carotenoid levels as these have high
216	concentrations of sweat glands. The amount of pigment accumulated within the skin
217	(predominantly in the upper part of the stratum corneum) correlates with dietary intake
218	and bioavailability. 43 The bioavailability of $\beta\mbox{-}car\mbox{otene}$ is actually fairly complex and
219	dependent upon the nature of the food source, food processing, genetic variation in the
220	carotene dioxygenase gene which at best yields an enzyme of low activity, is subject to both
221	inhibition by other carotenoids and asymmetric cleavage of β -carotene yielding non-
222	provitamin-A apocarotenals, and is affected by the fat content of the diet. This ineffective
223	process yields roughly 1mg of retinol per 6mg β -carotene. However, clearly genetic variation
224	in carotene dioxygenase might potentially reduce oxidative stress by increasing β -carotene
225	levels in the blood and tissues.
226	The most abundant carotenoids in humans are α - and β -carotene, and lycopene, along with

227 the xanthophylls; lutein, zeaxanthin, and α - and β -cryptoxanthin.^{45, 46} However, overall,

vitamin E is the most abundant lipophilic antioxidant in human skin, with the highest levels

in the epidermis.⁴³ From an evolutionary perspective, it is interesting to consider whether

the high levels of carotenoids/vitamin E in human sweat could have compensated for the

231	increased UV exposure (and hence potential skin damage) that would have occurred
232	following the transition to human "nakedness" that took place around 1.6 million years ago
233	in the Homo lineage. Certainly the loss of hair and development of significant eccrine sweat
234	that arose at this time allowed early man to dissipate heat generated as a "consequence of"
235	/"adaptation to" a rapidly changing climate; there was a notable shift from forest to
236	savanna in East Africa, as this region entered a dry phase three million years ago due to
237	global cooling. Such a change will have led Homo ergaster to forage further afield to
238	maintain dietary sustenance, a practice that required a physiological adaptation to prevent
239	overheating - one that is comfortably met in part by increased sweating and reduced
240	hairiness. ⁴⁷ This transition, leading to a significant loss of body hair in our ancestors, also
241	likely led to the selection of a more pigmented skin as an adaptive evolutionary response to
242	high levels of UV in the absence of protective hair; indeed, a specific variant of the MC1R
243	gene is associated with dark pigmentation, and is thought to have originated in Africa 1.2
244	million years ago. ⁴⁸ The authors are unaware whether the idea of antioxidant vitamins
245	within sweat has been framed in such an evolutionary context before, but the proposition is
246	certainly worth considering. Indeed, other vitamins (folate and vitamin D) are now thought
247	to have helped shape the skin phenome, and are discussed later.
248	The likely benefits of vitamin E in skin relate to protection against the cytotoxic effect of
249	UVB via a mechanism involving inhibition of UV induced lipid peroxidation or the anti-
250	oxidation effect of the vitamin. ⁴⁹ However, in truth, several potential mechanisms of action
251	are possible in explaining the UV mitigating effects of vitamin E beyond free radical
252	scavenging. It could act to either alter cellular response mechanisms, membrane fluidity, the
253	eicosanoid pathway or act as a natural sunscreen.43

254 DNA Maintenance and Repair

255 Several vitamins play a direct role in DNA maintenance and repair (folate, vitamin B12, 256 niacin), an indirect role, perhaps via an anti-oxidative effect (vitamin C, E, carotenoids), or a 257 modulatory role as a transcription factor (vitamin A, D and E). Several of these roles are 258 important in the context of a metabolic response to UV exposure and mitigating the 259 subsequent DNA damage that can ensue. 260 While many of these vitamins are directly sensitive to light, they can also be indirectly light 261 responsive in that they can help mitigate the negative impact of UV exposure on DNA 262 integrity. 263 As will be discussed later, folate is UV sensitive, but also necessary for the synthesis and 264 expression of DNA, which is in itself, highly UV labile. The role of folate is as a carrier of 265 various one-carbon units that can be transferred into important biosynthetic pathways. Of 266 particular importance are the synthesis of DNA-thymidylate (dTMP) and methionine. 267 Methionine is generated from homocysteine (Hcy) using both 5-methyltetrahydrofolate (5-268 methyl-H₄folate) and vitamin B12 as essential cofactors. Methyl groups derived from 269 methionine can be utilized for both genomic [CpG] and non-genomic methylation reactions. 270 Therefore, folate (and by association, vitamin B12) contributes to both the primary structure 271 and expression of genes. Consequently, any factors that perturb folate metabolism including 272 genetic variation and environmental factors (particularly dietary intake), can potentially 273 promote uracil misincorporation into the primary DNA base sequence in place of thymine, a phenomenon associated with DNA fragility.⁵⁰ Furthermore, researchers are only now 274 275 learning how critically important the epigenome is in regulating DNA expression and managing the complexities of cell biology during development and in disease.⁵¹ To this end, 276

277	genomic methylation patterns orchestrate human biology and subserve wellbeing, but are
278	highly complex, and a product of multiple interactions, including dietary ones. ⁵²
279	Folate enzymes operate in concert to maintain dTMP synthesis. One group of metabolically
280	linked genes encodes thymidylate synthase (TYMS), serine hydroxymethyltransferase
281	(SHMT1), and dihydrofolate reductase (DHFR). These three genes are polymorphic and their
282	expression products operate in a tight synergy that is fundamental in maintaining the
283	fidelity of dTMP synthesis and integrity of DNA. This co-operative association makes this
284	enzyme cluster critically important during periods of rapid cell turnover and differentiation,
285	such as, for example, during early embryo development and throughout the first trimester
286	of pregnancy. Elegant mechanisms exist to post-translationally modify these folate enzymes
287	and permit nuclear translocation during S and G2/M cell cycle phases. ^{53, 54} However, of
288	particular interest within this gene cluster is that SHMT plays a crucial role in the repair of
289	UV-propagated DNA damage. ⁵⁴ SHMT expression levels and post-translational SUMOylation
290	of TYMS increase, as does the nuclear compartmentation of SHMT and TYMS following
291	exposure to UV radiation. Interestingly, although this SHMT-related UV response does occur
292	in humans, it is absent in mice, ⁵⁵ suggesting species specificity and the possibility that it may
293	have evolved as an adaptive response to protect skin from UV related DNA damage, by
294	promoting additional dTMP synthesis.
295	One idea that has recently emerged relates to whether UV-irradiance can reduce long-term

296 systemic folate levels. In this recent study,⁵⁶ it was shown that UV exposure alters folate

297 status according to C677T-*MTHFR* genotype. The authors suggest that this might be because

298 either 677TT-*MTHFR* individuals contain more 5,10-methylenetetrahydrofolate (5,10-

299 methylene-H₄folate) coenzyme, which is a UV labile form of folate, or because of increased

300	utilisation of folate for DNA repair (dTMP synthesis) under increased UV regimes. 5,10-
301	methylene-H $_4$ folate is the immediate precursor of the one-carbon unit needed for dTMP
302	synthesis, and as a result of its metabolic location and functional change, the MTHFR 677TT
303	variant is thought to help maintain the fidelity of DNA-dTMP synthesis when folate levels
304	are low. ⁵⁷ While this point is germane to DNA maintenance and repair, the broader aspects
305	of folate sensitivity to UV exposure are dealt with in detail in Section 5 (UV vulnerability of
306	vitamins).
307	It is also relevant to note that increased use of the synthetic form of folate
308	(pteroylmonoglutamic acid [PteGlu]) at a population level via discretionary and government
309	mandated use might be an issue in the present context. Research has shown that PteGlu
310	photolytic scission products (i.e. pterin-6-carboxylic acid) can lead to oxidation of 2'-
311	deoxyguanosine 5'-monophosphate and sequence-specific DNA cleavage, ⁵⁸ which
312	represents a major risk for oncogenesis. ^{59, 60} The same does not occur with the natural
313	vitamer, 5-methyl-H $_4$ folate. However, despite these observations, the authors are unaware
314	of any population studies that indicate fortification/supplementation with PteGlu increases
315	DNA damage.
316	Another vitamin known to be light responsive in the context of DNA repair is niacin (vitamin
317	B3). Niacin deficiency in humans lowers NAD status, resulting in sun sensitive skin. This
318	lower NAD level actually mediates UV damage. ⁶¹

Both of the B3 vitamers, nicotinic acid and nicotinamide, are required for the synthesis of

- 320 nicotinamide adenine dinucleotide [NAD(H)] and nicotinamide adenine dinucleotide
- 321 phosphate [NADP(H)]. Both NAD and NADP serve as coenzymes for a large number of
- 322 enzymes.⁶² However, as well as its coenzyme role, NAD+ has multiple roles as a substrate for

323	mono-ADP-ribosylation, poly-ADP-ribosylation, and NAD-dependent protein deacetylation. ⁶¹
324	This is relevant to skin biology, since niacin deficient keratinocytes, which are more sensitive
325	to UV damage, exhibit poly(ADP-ribose) polymerase (PARP) and sirtuin inhibition due to a
326	lack of NAD+, resulting in unrepaired DNA damage and cell death following UV exposure.
327	Recent identification of the nicotinic acid receptor in human skin keratinocytes further
328	supports a role for niacin as a potential pharmacologic agent in the prevention of UV
329	induced skin cancer. ⁶¹
330	This influence of niacin should be unsurprising given that the deficiency syndrome for this
331	vitamin is Pellagra, a condition that produces a severe photo-dermatitis as part of the
332	symptomology.
333	The unifying explanation for the photo-responsive influence of niacin in skin biology stems
334	largely from the role of NAD+ as a substrate for the PARP enzymes that are crucial in the
335	DNA damage response, including UV damage. This role is therefore fundamental in genomic
336	repair, stability, signalling as a stress response in apoptosis, and gene expression. ⁶³⁻⁶⁶ In the
337	latter case, PARP-1 is also a structural element of chromatin, modifying chromatin structure
338	via its enzymatic activity (represses transcription). ⁶⁷
339	The involvement of PARP-1 in maintaining genomic integrity underpins the beneficial role of
340	niacin following genotoxic stress; several labs now link the influence of this vitamin in cancer
341	prevention. 61 Activation of PARP-1 by DNA strand breakage (including UV induced damage)
342	leads to a complex signalling network that modifies cell survival, cell death via apoptosis, or
343	energy loss and hence necrosis. However, from the perspective of niacin per se, extreme

344 genotoxicity promotes PARP-1 over-activation and cell death through depletion of first

345	NAD+ and then ATP. This deprives the cell of energy dependent functions and precipitates
346	cell death. Research has also shown that a fall in cellular NAD+ status itself can trigger
347	mitochondria to initiate cell apoptosis. ⁶⁸
348	While NAD+ is derived from dietary niacin, humans can also form this cofactor by de novo
349	synthesis from tryptophan, and so like vitamin D, niacin is not strictly speaking a vitamin,
350	although it is conveniently classify it as such.
351	Antioxidant vitamins such as vitamin C, E, and carotenoids act to protect DNA from the
352	damaging effects of free radicals that can be generated by UV exposure. These vitamins
353	neutralise unpaired electrons in highly reactive radical species, delocalising the unpaired
354	electron in their own molecular structure to form resonance stabilised radicals (stable
355	radicals such as the tocopheroxyl radical for vitamin E and monodehydroascorbate for
356	vitamin C). Specific mechanisms, both facile and enzymatic, can then salvage the stable
357	radical form of the vitamin back to its natural antioxidative form. However, at high levels of
358	consumption, these vitamins can behave as pro-oxidants, and therefore act as a free radical
359	generator. In this context, the best-known example is probably the use of high dose eta -
360	carotene to try to prevent cancer, but the outcome showed the opposite effect - increased
361	lung cancer rates. This is despite normal levels of intake being associated with lower cancer
362	rates. ⁶⁹ Two and two does not always make four; the problem may stem from higher
363	antioxidant concentrations readily translocating to the nucleus.
364	Vitamin C may also have an indirect effect on maintaining genomic stability via its functional
365	salvage of reduced folates in the stomach. The active secretion of vitamin C into the
366	stomach lumen against a concentration gradient is considered important to prevent low pH
367	loss of oxidised methylfolate (5-methyl-H ₂ folate). Vitamin C is therefore critically important

368	for maintaining folate bioavailability, ^{70,71} and folates are arguably the most important
369	vitamin in respect of maintaining DNA integrity.

370 UV Dependent Vitamins

371 -	The most obviousl [,]	y UV dep	pendent micronutrient	is vitamin D.	The two dietary	y forms of this
-------	--------------------------------	----------	-----------------------	---------------	-----------------	-----------------

372 vitamin are ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3). However, while

vitamin D3 is a dietary component, it is also synthesised from the UVB (290-315nm)

irradiation of 7-dehydrocholesterol, a sterol that is uniquely concentrated in the skin.

Following the absorption of a quantum of solar energy, 7-dehydrocholesterol opens at C9-

376 C10, and yields the 6,7-cis hexatriene derivative, previtamin D. This is followed by a slower

377 thermal-dependant isomerisation that shifts the double bonds with the resulting rotation of

378 the single C6-C7 bond leading to a thermodynamically stable 5,6-cis isomer form of vitamin

379 D (cholecalciferol).¹

380 Once formed in the stratum basale and stratum spinosum, previtamin D can undergo

381 several potential reactions; a reversible photoconversion involving either a ring closure to its

parent provitamin D (cholecalciferol), or ring closure to form the inactive stereoisomer

383 metabolite, lumisterol, or isomerisation to form the inactive 6,7-trans isomer, tachysterol.^{1,}

⁷² In addition, according to Jacobs there are at least 13 toxisterols that may potentially be

produced by prolonged irradiation.⁷³ Dauben and Bauman identified two suprasterols as

products following prolonged radiation,⁷⁴ while Havinga documents four additional

387 photoisomers of vitamin D.⁷⁵

Vitamin D3 is itself photolabile at wavelengths between 315-335 nm, which are longer
wavelengths than are required to photosynthesise the vitamin (<315 nm).⁷² As these

390	wavelengths are present throughout the year, degradation may occur in every month. ⁷² This
391	needs to be considered in the context that the UVB bandwidth for optimal previtamin D
392	synthesis is narrow (280-320 nm). This is at the short wavelength limit on the edge of the
393	ozone absorption band, where light is first able to penetrate through to the Earth's surface
394	leading to a limited, seasonal vitamin synthesis from 7-dehydrocholesterol. ^{72, 76} It is also in
395	the waveband absorbed by melanin. This means that darkly pigmented skin moderates
396	formation of previtamin D3 after UVB exposure. As a result, deeply melanised skin can be
397	considered as non-adaptive in circumstances where it limits vitamin D3 synthesis at higher
398	latitudes. Indeed, melanisation interacts with altitude, latitude, time of day, and weather
399	conditions to influence previtamin D3 biosynthesis. Of course, the use of sunscreen can
400	equally limit the vitamins biosynthesis. ^{1, 77}
401	Once it is formed from previtamin D (around 80% conversion in 4 days), vitamin D3 is
402	transported away from the skin, and is drawn into the capillary bed by vitamin D binding
403	protein (DBP). ¹ The main circulating and storage form of the vitamin in blood plasma is
404	25(OH)D ₃ . 25(OH)D ₃ is metabolised from cholecalciferol in the liver and is subsequently
405	converted into the active vitamin form of vitamin D, 1,25-dihydroxyvitamin D $[1,25(OH)_2D_3]$
406	in the proximal tubules of the kidney. ^{3, 72}
407	Vitamin D underpins critical physiological processes related to calcium homeostasis; notably
408	1,25(OH) $_2D_3$ (a) enhances intestinal absorption of calcium; (b) reduces urinary losses of
409	calcium by enhanced resorption in the distal renal tubules; (c) regulates mobilization and
410	deposition of bone mineral. For these and other reasons $1,25(OH)_2D_3$ synthesis is highly
411	regulated: cholecalciferol undergoes two consecutive hydroxylation reactions that act to
412	regulate both 1,25(OH) $_2D_3$ synthesis and intracellular calcium levels.

413	Hepatic vitamin D 25-hydroxlase converts cholecalciferol into $25(OH)D_3$, and in the kidney,
414	25-hydroxyvitamin D-1 α -hydroxylase converts 25(OH)D ₃ into 1,25(OH) ₂ D ₃ . Both of these key
415	regulatory enzymes are in the cytochrome family and are encoded by CYP2R1 and CYP27B1,
416	respectively. A third enzyme (25-hydroxyvitamin D-24-hydroxylase) can also convert both
417	25(OH)D $_3$ and 1,25(OH) $_2$ D $_3$ into apparently inactive metabolites (24,25-dihydroxyvitamin D
418	and 1 α ,24R,25-trihydroxyvitamin D, respectively). Within this regulatory nexus, several
419	feedback mechanisms are in place to regulate calcium levels. These operate at the level of
420	the 1- and 24-hydroxylases: Firstly, $1,25(OH)_2D_3$ acts to reduce its own synthesis by inducing
421	the 24-hydroxylase and repressing the 1-hydroxlase enzymes. In both these cases,
422	modulation is via altered gene expression. Secondly, a drop in blood calcium initiates
423	parathyroid hormone (PTH) secretion. This promotes 1-hydroxylase activity, but inhibits
424	activity of the 24-hydroxylase. This function is countered by elevated calcium and
425	$1,25(OH)_2D_3$ levels, which repress PTH synthesis. Thirdly, although a minor effect, calcium
426	can act directly to inhibit the 1-hydroxylase enzyme. ³
427	The solar dependency for cholecalciferol biosynthesis, and subsequently sun independent
428	$1,25(OH)_2D_3$ synthesis, and this latter vitamers role in bone mineral homeostasis explains
429	why the deficiency syndrome is rickets in children and osteomalacia in adults. The former
430	condition stemming from a failure to mineralise in the first place, and the latter resulting
431	from demineralisation.
432	During the mid-17 th century, rachitic deformities were a distinct phenomenon arising due to
433	the increasing urbanization of England's population, and the associated atmospheric

434 pollution (smog and smoke) that hindered seasonal vitamin D synthesis at these northerly

435 latitudes. By the turn of last century, industrialisation, migration, atmospheric pollution and

the spread of slums, poverty and overcrowding in Western Europe and the US enhanced the

437 prevalence of rickets due to the prevailing environment reducing exposure to dietary

438 vitamin D and appropriate levels of UVB.^{1, 3}

439 The only other vitamin that has such a clear function linked to light exposure is vitamin A.

440 The phototransformation of the 11-cis-retinal chromophore into the 11-trans form of retinal

441 being necessary for vision as discussed above.

442 UV Vulnerable Vitamins

443 Several vitamins are photolabile and respond directly to different wavelengths of light by

444 degrading. However, some vitamin loss may be indirect and attributable to a UV originated

increase in free radicals. Although some vitamins may potentially utilise other available

446 antioxidants as a protective mechanism against radical attack.

447 Vitamin B1 (thiamine) is quickly degraded by sunlight and although flour and bread are 448 potentially good sources of this vitamin, most of this can be lost when baked products are 449 put on display in shop windows. Similarly, vitamin B2 (riboflavin) undergoes photolysis to 450 form lumiflavin under alkaline conditions or lumichrome under neutral or acidic conditions. 451 Both of these are biologically inactive meaning that dairy products, a major source of this 452 vitamin, are sensitive to sun exposure and even fluorescent light (400-550nm). Furthermore, 453 these photolysis products can cause lipid peroxidation and conversion of methionine into methional, which confers a tainted "sunlight" flavour to milk.³ Vitamin B2 is also interesting 454 because it can act as a photosensitiser for folate, enhancing UV-dependent degradation in 455 contrast to vitamin C and glutathione, which enhance folate stability.⁵⁶ Cyanocobalamin, the 456 457 supplementary/pharmaceutical form of vitamin B12 is the most stable B12 vitamer.

458	However, light leads to cyano group dissociation and the formation of hydroxocobalamin,
459	although this photolysis does not influence B12 activity.
460	As alluded to above, it is impossible for humans to manufacture toxic levels of vitamin D3
461	from sun exposure because of the formation of inactive lumisterol, tachysterol or a range of
462	other toxisterols after prolonged exposure, ⁷²⁻⁷⁵ thereby preventing hypervitaminosis D.
463	However, even vitamin D3 can be degraded by longer wavelengths than are required for its
464	synthesis (>315nm). ⁷²
465	Recent research has also shown strong evidence that UV exposure can destroy systemic
466	levels of folate (red cell and plasma), and that this effect is modified by C677T-MTHFR
467	genotype. ⁵⁶ Cumulative UV-irradiance determined for 42 and 120 days pre-clinic was
468	significantly negatively associated with red cell folate. When the cohort (n=649) was
469	stratified by <i>MTHFR</i> -C677T genotype, the relationship between UV-irradiance remained
470	significant only in the cohorts containing carriers of the T allele. The authors suggest that

471 these data provide strong evidence that surface UV-irradiance reduces long-term systemic

472 folate levels, and that since this is influenced by C677T-*MTHFR* genotype, the effect may be

473 due to 677TT-*MTHFR* individuals containing more 5,10-methylene-H₄folate, a form of folate

474 that may be particularly UV labile.⁵⁶

475 Several studies have looked at the light sensitivity of folate: In vitro studies have

 $476 \qquad demonstrated \, \text{UV-B light at 312nm can degrade plasma/cellular 5-methyl-} H_4 folate, leading$

477 to the formation of oxidized 5-methyl-H₂folate, with the eventual loss of all vitamin activity

- 478 via C9-N10 bond scission.⁷⁸ This is supported by a more recent ex vivo study that showed
- 479 longer UVA as well as UVB wavelengths can degrade this natural, 5-methyl-H₄folate, form of
- 480 folate.⁷⁹ Longer wavelengths in the UVA spectrum (315-400nm) can penetrate deeper into

481	the skin and reach the dermal circulation. For this reason it has been attributed to
482	photolytic degradation of synthetic PteGlu that remains unmetabolised in the circulation,
483	and which in this unmodified form is increasingly being linked to negative health correlates,
484	including the potential production of 6-formylpterin, which eventually oxidizes to form
485	pterin-6-carboxylic acid and which as discussed earlier may contribute to carcinogenesis. ⁵⁸⁻⁶⁰
486	Other than the 2016 study by Lucock and colleagues, ⁵⁶ the only other population study was
487	by Borradale et al who showed that solar UV exposure over three weeks reduces the
488	effectiveness of PteGlu supplements in a young female population of reproductive age who
489	live in a region with extreme UV exposure ⁸⁰ . This was a relatively small study with 45
490	participants, and was limited to serum folate measurements that do not reflect overall
491	folate status as well as red cell folate values do.
492	Any UV-associated loss of folate status within population studies needs to be considered in
493	the context that a vitamin decline might also reflect an increased need for the vitamin to
494	maintain DNA repair processes. ⁵⁶

495 Another vitamin that is closely associated with folate is vitamin B12 (cobalamin). A 2014 496 study has suggested that deficiency in B12 is associated with geographical latitude and solar radiation in an older population from Chile.⁸¹ The research found that the prevalence of 497 498 vitamin B12 deficiency was associated with living closer to the Equator and solar radiation. 499 Overall, the prevalence of vitamin B12 deficiency was 11.3%, with prevalence in the North 500 of the country being significantly greater than in Central and South Chile (19.1%,10.5%, and 501 5.7%, respectively; P < 0.001). The authors conclude that although degradation by solar 502 radiation might explain their observation, further work is required to establish the potential 503 mechanisms involved. Although no link currently exists between solar radiation, B12 and

504	related redox changes, it is interesting to consider that the vitamin B12 metabolic locus may
505	be sensitive to oxidative stress, including possibly UV induced effects. Redox changes can
506	increase the flux of Hcy through the transsulphuration pathway to cysteine and glutathione
507	(a major cellular antioxidant) via a regulatory role at the key enzymes, methionine synthase
508	and cystathionine- β -synthase. It has been suggested that this may be a self-correcting
509	response to depleted glutathione in cells facing oxidative challenge. ⁸² Such challenge is likely
510	to increase following UV exposure. It is also worth noting that although not relevant to
511	humans, micro-organisms have recently been found to use B12 as a light absorbing
512	chromaphore to facilitate gene expression, and that the number of species and kingdoms
513	involved suggests a B12 light sensor is widespread and has a deep evolutionary history. ⁸³
514	Paradigms in Human Evolution Linking Vitamins to Seasonality and Geography
515	There can be little doubt that the sun and associated daily, seasonal and related geophysical
515 516	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the
515 516 517	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all
515 516 517 518	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial
515 516 517 518 519	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other
515 516 517 518 519 520	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other environmental factors. The human exposome has therefore contributed to disease risk and
515 516 517 518 519 520 521	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other environmental factors. The human exposome has therefore contributed to disease risk and the evolution of the human species.
515 516 517 518 519 520 521	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other environmental factors. The human exposome has therefore contributed to disease risk and the evolution of the human species.
515 516 517 518 519 520 521 522 523	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other environmental factors. The human exposome has therefore contributed to disease risk and the evolution of the human species. Two vitamins that interact with light to influence human phenotype through putative evolutionary and/or evo-devo mechanisms are folate and vitamin D. Moreover, it is entirely
515 516 517 518 519 520 521 522 523 524	There can be little doubt that the sun and associated daily, seasonal and related geophysical cycles play a crucial role in the orchestration of the human lifecycle. Indeed, the sun is the dominant force in the human exposome, which in the broadest terms includes all wavelengths of UV and visible radiation, photoperiod, seasonality, essential and beneficial non-essential dietary nutrients, and temperature, but also includes a profusion of other environmental factors. The human exposome has therefore contributed to disease risk and the evolution of the human species. Two vitamins that interact with light to influence human phenotype through putative evolutionary and/or evo-devo mechanisms are folate and vitamin D. Moreover, it is entirely likely that the role of UV in the degradation of folate and synthesis of vitamin D contributes

526	Both of these UV-sensitive vitamins play a crucial role in cell metabolism, with recent
527	research opening up some interesting ideas on how seasonal/exposomal UV-R might alter
528	systemic levels of these vitamins that are required as cofactors/ligands for essential proteins
529	that exhibit variable activity depending on genotype. If proteins that are potentially
530	polymorphic are critical for early embryo development, it is conceivable that certain "UV-
531	vitamin-genotype" combinations might lead to embryo loss. For example, low systemic
532	levels of folate or vitamin D might select embryos with a specific vitamin-related gene
533	variant (or variant profile) that has expression products better at utilizing lower vitamin
534	levels.
535	While this has an immediate effect on embryo survival, if selected, such variants might
536	additionally alter disease risk later in life according to an individual's long-term nutritional
537	habits. ⁸⁴ The present authors have tested and developed this argument for the folate-
538	related C677T-MTHFR variant, and this concept seems plausible given that an estimated
539	70% to 80% of pregnancies are lost after conception. ^{3, 84} Indeed, this fits perfectly with
540	environmental and nutritional agents interacting to alter genotype-phenotype relationships
541	across the lifecycle in a way that supports the "developmental origins of adult disease"
542	model. However, it also provides a molecular explanation for the idea that UV-R
543	photosynthesis of vitamin D and photo-degradation of folate directed the evolution of
544	parallel but opposing phenotypic clines of skin pigmentation.
545	Jablonski and Chaplin have developed this idea, the "folate–vitamin D-sunlight hypothesis"
546	of skin pigmentation in recent years ⁸⁵ . The principle is relatively straightforward; The
547	aberrant effects of folate degradation on fertility promotes protective melanisation toward
548	equatorial latitudes, while the need for vitamin D photosynthesis and calcium balance

549	facilitates epidermal depigmentation moving away from equatorial latitudes. The authors
550	have recently published several separate articles that lend support to this hypothesis and a
551	likely involvement of both folate ^{56, 86} and vitamin D ^{3, 87} in skin pigmentation as an evolved
552	trait. This hypothesis is consistent with maximal tanning occurring during the reproductive
553	phase of the lifecycle when folate protection is most obviously required for reproductive
554	efficiency . ⁸⁸ It is also consistent with the recent observation that key folate gene
555	polymorphisms exhibit a geographic distribution that points to the maintenance of
556	homeostasis between folate-dependent de novo thymidylate synthesis and methylation
557	pathways in environments of differing solar regimes. ⁸⁶ In this study, MTHFR-C677T and
558	MTHFR-A1298C polymorphisms were positively associated with latitude, while a negative
559	association was observed between latitude and frequency of the cSHMT-C1420T and TYMS
560	28bp 2R>3R variants. ⁸⁶ These findings for <i>MTHFR</i> -C677T were consistent with those of
561	previous research. ⁸⁹ Overall, these findings align with solar regime selecting a cassette of
562	folate gene variants that regulate a folate "homeostat" optimised to maintain key one-
563	carbon biosynthetic reactions, particularly those destined for methyl group and DNA
564	pathways. This paradigm is additionally supported by a study in 2017 that looked at the
565	association between population prevalence of 17 variants in 9 folate-related genes (MTRR,
566	MTR, MTHFR, CBS, SHMT1, MTHFD1, RFC1, BHMT, TYMS) and the Fitzpatrick skin phototype
567	of populations. ⁹⁰ The association was assessed via collation of genotypic data from ALFRED
568	(Allele Frequency Database) and 1000 Genomes databases. The study demonstrated novel
569	relationships between skin colour and folate-related genes, with trends suggesting folate
570	genotypes are selected to maintain homeostasis in the folate system under variable UVR
571	conditions. Therefore, this paradigm, based on a UV-exposome driven folate "homeostat",
572	merits wider investigation.

Page 26 of 44

573	The VDR gene seems to be a factor in the evolutionary selection of skin depigmentation at
574	higher latitudes to allow vitamin D synthesis. Evidence suggests that VDR polymorphisms
575	exhibit a latitudinal gradient in allele prevalence: Hochberg and Templeton have examined
576	the evolutionary perspective of skin colour, vitamin D, and the VDR. ⁹¹ They speculate that
577	alongside changing skin pigmentation based on MC1R and several other pigmentation
578	genes, the highly variable VDR gene forms part of an evolutionary complex that adapts
579	humans to an altering UV exposome. This begs the question, "is VDR an agent of short-term
580	adaptation, or is it a component within a cassette of genes that are altered in the longer
581	term to adapt the human phenome to the prevailing conditions"? ³ This has been partially
582	addressed by examining how 4 VDR gene polymorphisms vary according to latitude in
583	African and several Eurasian populations. ³ Evidence is provided that VDR FokI (f), BsmI (b),
584	Apal (a), and Taql (t) allele prevalence decreases in a significant linear fashion with respect
585	to decreasing latitude (ie, as one approaches the equator). This fits a hypothesis that links
586	latitude, skin colour, vitamin D, and the VDR, and is consistent with a longer-term
587	evolutionary trend, ³ although recent studies support short-term effects as well. ⁹² However,
588	a more recent detailed molecular explanation suggests the degree of VDR gene methylation
589	acts as a molecular adaptation to light exposure. This was explored in the context of
590	photoperiod at conception, recent UV irradiance at 305nm, and gene-latitude effects. ⁸⁷ In
591	80 subjects, periconceptional photoperiod was positively related to VDR methylation
592	density, explaining 17% of the variance in methylation (p=0.001). Within this model,
593	photoperiod at conception and plasma vitamin D independently predicted methylation
594	density at the VDR-CpG island. Furthermore, recent UV exposure led to a 5-fold increase in
595	methylation density (p=0.02). Again, within this model, UV exposure and plasma vitamin D
596	independently predict methylation density at the VDR-CpG island.

597	In the presence of the VDR BsmI mutant allele, methylation density was enhanced (p=0.01),
598	and in the presence of the TaqI or FokI mutant allele, methylation density was diminished
599	(p=0.007 and 0.04 respectively). When multivariate modelling was performed, plasma
600	vitamin D, photoperiod at conception, recent solar irradiance, and VDR genotype combine
601	as independent predictors of methylation at the VDR-CpG island, explaining 34% of variance
602	in methylation (p<0.0001).
603	The conclusions were that duration of early-life exposure and strength of recent irradiance,
604	along with latitudinal-related genetic factors, influence VDR gene methylation in a
605	predictable manner. This is consistent with this epigenetic phenomenon being a molecular
606	adaptation to variation in ambient light exposure. ⁸⁷
607	Ultimately, as with all organisms, the ability of humans to modify phenotype in response to
608	an environmental challenge is a major precept in the life sciences. Since light exposure shifts
609	according to season and latitude, with variable exposures possible at key stages in the
610	lifecycle, it is important that humans do not retain overly rigid phenotypes, but maintain a
611	degree of phenotypic plasticity to allow responses that are appropriate to key periods of
612	exposure. This is particularly true during embryogenesis and foetal development, but it is
613	also important to ensure a flexible response over the entire life course. There is much work
614	still to be done on folate and vitamin D in this respect, but recent work on VDR gene
615	methylation as a molecular adaptation to light exposure suggests that such endeavour will
616	reveal new insights into human biology ⁸⁷ .

617

618 **CONCLUSION**

619	This article explores an aspect of vitamin biology that is often overlooked, or considered in a
620	limited context in relation to single nutrients. With growing interest in nutritional genetics
621	and potential interactions with the broader exposome, solar exposure is increasingly being
622	recognised as an important factor in human biology, and is one that implicates several
623	vitamins in highly evolved roles. The review looks at the broad role of light in vitamin
624	biochemistry, and offers a perspective that extends from the molecular aspects of vision, to
625	short term epigenetic adaptations via the VDR, and even longer term evolutionary
626	adaptations. The goal has been to organise disparate facts into a single synthesis that will
627	help open up further ideas and research into this fascinating and important field.
628	Table 1 acts as a useful summary for this review, demonstrating six light-related phenomena
629	that show how important many vitamin-light interactions are to human wellbeing. ^{1-5, 9, 10, 17-}
630	19, 24, 26, 31, 32, 34-39, 41-44, 50, 51, 54, 56, 57, 59, 61-68, 72, 73, 79-81, 83-91, 93 While some of these such as
631	vitamin D synthesis in the skin are well known, others are less well known, or poorly
632	characterised. For example, vitamin B3 is responsive to UV induced genomic damage.
633	Folate, vitamins B1, B2 and B12, as well as some D vitamers are vulnerable to light. Some
634	vitamins and pro vitamins or related compounds act as protective filters in the skin (eta -
635	carotene, vitamins C and E) and eyes (lutein, zeaxanthin). Several vitamins have been shown
636	to act as transduction intermediaries in light-related signalling. Vitamin A as retinal in the
637	eye is best known in this respect, but vitamin D, folate and vitamins B2 and B12 have all
638	been shown to act in light signalling pathways. The integrity of DNA in the face of UV
639	challenge, along with genomic expression, including UV responsive expression, relies on
640	folate, vitamins B3, A, D and E. Finally, and quite significantly, this review explores ideas and

641	recent data that light-vitamin (folate/vitamin D) relationships link in to the evolution of
642	important human phenotypes.
643	Many questions still exist, and the goal of this review has been to focus attention on a
644	hugely important topic that shows how connected humans are to diet and environment,
645	and particularly how relevant solar-related geophysical cycles are to the human lifecycle.
646	
647	ACKNOWLEDGEMENTS
648	Author Contribution
649	All authors read and approved the final version of the paper. Overall idea developed by ML;
650	Clinical perspective – MV; Genetic perspective – CM, ZY, PJ, EB; Physics perspective – JF;
651	Article crafted – ML, PJ, EB. Final form edited by all authors.
652	Sources of External Funding
653	Patrice Jones was support through an "Australian Government Research Training Program
654	Scholarship".
655	
656	REFERENCES
657	1. Martin CE, Veysey M, Yates ZR, Lucock MD. Vitamin D: Genetics, Environment & Health. J
658	Food Nutr Disor. 2014;3:5.
659	
660	2. Palczewski K. Chemistry and Biology of Vision. J Biol Chem. 2012;287:3:1612-1619.

- 3. Lucock M, Jones P, Martin C, et al. (2015). Vitamin D: Beyond Metabolism. JEBCAM.
- 663 2015;20:310-322.
- 664
- 4. Lucock M. Folic acid: Beyond Metabolism. JEBCAM. 2011;16:102-113.
- 666
- 5. Ozgur S, Sancar A. Purification and properties of human blue-light photoreceptor
- 668 cryptochrome 2. *Biochemistry*, 2003;42:2926-2932.

- 670 6. Schibler U. The daily rhythms of genes, cells and organs: Biological clocks and circadian
- timing in cells. EMBO Rep. 2005;6:S9-S13.

672

- 673 7. Kavakli IH, Sancar A. (2002). Circadian photoreception in humans and mice. Mol Interv.
- 674 2002;2: 484-492.
- 675
- 8. Ozgur S, Sancar A. Analysis of autophosphorylating kinase activities of arabidopsis and
- human cryptochromes. Biochemistry. 2006;45:13369-13374.

678

- 679 9. Wolf G. Three vitamins are involved in regulation of the circadian rhythm. Nutr Rev.
- 680 2002;60:257-260.

681

- 10. Hsu DS, Zhao X, Zhao S, et al. Putative human blue-light photoreceptors hCRY1 and
- hCRY2 are flavoproteins. Biochemistry. 1996;35:13871-13877.

684

11. Pardini L, Kaeffer B. Feeding and circadian clocks. Reprod Nutr Dev. 2006;46:463-480.

686	
687	12. Lin JD, Liu C, Li S. Integration of energy metabolism and the mammalian clock. Cell Cycle.
688	2008;7:453-457.
689	
690	13. Zhang EE, Liu AC, Hirota T, et al. A genome-wide RNAi screen for modifiers of the
691	circadian clock in human cells. Cell. 2009;139:199-210.
692	
693	14. Palczewski K. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 2006;75:743–
694	767.
695	
696	15. Hofmann, KP, Scheerer P, Hildebrand PW, et al. A G protein-coupled receptor at work:
697	the rhodopsin model. Trends Biochem Sci. 2009;34:540–552.
698	
699	16. Fein A, Szuts EZ. Photoreceptors: Their Role in Vision. Cambridge, UK: Cambridge
700	University Press; 1982.
701	
702	17. McLaren DS, Kraemer K (eds): Vitamin A in Nature; Manual on Vitamin A Deficiency
703	Disorders (VADD). World Rev Nutr Diet. Basel, Karger, 2012, vol 103, pp 7–17.
704	
705	18. Zhong M, Kawaguchi R, Kassai M, Sun H. Retina, Retinol, Retinal and the Natural History
706	of Vitamin A as a Light Sensor. Nutrients. 2012; 2069-2096.
707	
708	19. Saari JC. Vitamin A Metabolism in Rod and Cone Visual Cycles. Annu. Rev. Nutr. 2012;
709	125-145.

710	
711	20. Cascella M, Barfuss S, Stocker A. Cis-retinoids and the chemistry of vision. Arch.
712	Biochem. Biophys. 2013; 187-195.
713	
714	21. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J
715	Neurochem. 2014;129:366-376.
716	
717	22. Wertz K, Hunziker PB, Seifert N, et al. beta-Carotene interferes with ultraviolet light A-
718	induced gene expression by multiple pathways. J Invest Dermatol. 2005;124:428-434.
719	
720	23. Vieth R. Why "Vitamin D" is not a hormone, and not a synonym for 1,25-dihydroxy-
721	vitamin D, its analogs or deltanoids. J Steroid Biochem Mol Biol. 2004;89–90:571–573.
722	
723	24. Beckett EL, Duesing K, Martin C, et al. Relationship between methylation status of
724	vitamin D-related genes, vitamin D levels, and methyl-donor biochemistry. J Nutr Intermed
725	Metab. 2016;6:8-15.
726	
727	25. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from
728	vitamin D receptor null mice. Endocr Rev. 2008;29:726–776.
729	
730	26. Fetahu IS, Hobaus J, Kallay E. Vitamin D and the epigenome. Front Physiol. 2014;5:164.
731	
732	27. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev.
733	2010;25:1010e22.

734	
735	28. Dennison EM, Arden NK, Keen RW, et al. Birthweight, vitamin D receptor genotype and
736	the programming of osteoporosis. Paediatr Perinat Epidemiol. 2001;15:211-219.
737	
738	29. Sayers A, Tobias JH. Estimated maternal ultraviolet B exposure levels in pregnancy
739	influence skeletal development of the child. J Clin Enocrinol Metab. 2009;94:765-771.
740	
741	30. Waldie KE, Poulton R, Kirk IJ, Silva PA. The effects of pre- and post-natal sunlight
742	exposure on human growth: evidence from the Southern Hemisphere. Early Hum Dev.
743	2000;60:35-42.
744	
745	31. Pike JW, Meyer MB. The vitamin D receptor: New paradigms for the regulation of gene
746	expression by 1,25-dihydroxyvitamin D3. Endocrinol Metab Clin North Am. 2010;39:255-
747	269.
748	
749	32. Ramagopalan SV, Heger A, Berlanga AJ, et al. A ChIP-seq defined genome-wide map of
750	vitamin D receptor binding: associations with disease and evolution. Genome Res.
751	2010;20:1352-1360.
752	
753	33. Dopico XC, Evangelou M, Ferreira RC, et al. Widespread seasonal gene expression
754	reveals annual differences in human immunity and physiology. Nat Commun.
755	2015;6:7000;DOI: 10.1038/ncomms8000
756	

757	34. Stahl W, Sies H. B-Carotene and other carotenoids in protection from sunlight. Am J Clin
758	Nutr. 2012;96:1179S-1184S.
759	
760	35. Darvin ME, Fluhr JW, Caspers P, et al. In vivo distribution of carotenoids in different
761	anatomical locations of human skin: comparative assessment with two different Raman
762	spectroscopy methods. Exp Dermatol. 2009;18:1060-1063.
763	
764	36. Alaluf S, Heinrich U, Stahl W, Tronnier H, Wiseman S. Dietary carotenoids contribute to
765	normal human skin color and UV photosensitivity. J Nutr. 2002;132,399–403.
766	
767	37. Lee J, Jiang S, Levine N, Watson RR. Carotenoid supplementation reduces erythema in
768	human skin after simulated solar radiation exposure. Proc Soc Exp Biol Med. 2000;223:170-
769	174.
770	
771	38. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Bichim Biophys
772	Acta. 2005;1740:101-107.
773	
774	39. Césarini JP, Michel L, Maurette JM, Adhoute H, Béjot M. Immediate effects of UV
775	radiation on the skin: modification by an antioxidant complex containing carotenoids.
776	Photodermatol Photoimmunol Photomed. 2003;19:182-189.
777	
778	40. Biesalski HK, Hemmes C, Hopfenmuller W, Schmid C, Gollnick HP. Effects of controlled
779	exposure of sunlight on plasma and skin levels of beta-carotene. Free Radic Res.
780	1996;24:215–24.

781	
782	41. Dinkova-Kostova AT. Phytochemicals as protectors against ultraviolet radiation:
783	versatility of effects and mechanisms. Planta Med. 2008;74:1548–1559.
784	
785	42. Sies H, Stahl W. Nutritional protection against skin damage from sunlight. Annu Rev
786	Nutr. 2004;24:173–200.
787	
788	43. Fernandez-Garcia E. Skin protection against UV light by dietary antioxidants. Food Funct.
789	2014;5:1994-2003.
790	
791	44. Kijstra A, Tian Y, Kelly ER, Berendschot TTJM. Lutein: More than just a filter for blue light.
792	Prog Ret Eye Res. 2012;31:303-315.
793	
794	45. Khachik F, Spangler CJ, Smith JC, L. Canfield LM, Steck A, Pfander H. Identifcation,
795	quantification, and relative concentrations of carotenoids and their metabolites in human
796	milk and serum. Anal Chem. 1997;69,1873–1881.
797	
798	46. Stahl W, Sundquist AR, Hanusch M, Schwarz W, Sies H. Separation of b-carotene and
799	lycopene geometrical isomers in biological samples. Clin. Chem. 1993;39:810–814.
800	
801	47. Jablonski NG. The Naked Truth. Sci Amer. 2016;25:52-59.
802	
803	48. Rogers AR, Iltis D, Wooding S. Genetic variation at the MC1R locus and the time since
804	loss of human body hair. Current Anthropology. 2004;45:105-108.

805	
806	49. Packer L Ultraviolet radiation (UVA, UVB) and skin antioxidants. In Rice Evans CA,
807	Burdon RH eds. Free radical damage and its control. New York: Elsevier Press; 1994:234–
808	255.
809	
810	50. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease
811	processes. Mol Genet Metab. 2000;71:121–138.
812	
813	51. Lucock M, Yates Z, Martin C, et al. Methylation diet and methyl group genetics in risk for
814	adenomatous polyp occurrence. BBA Clin. 2015;3:107-112.
815	
816	52. Lucock M, Leeming R. Autism, seasonality and the environmental perturbation of
817	epigenome related vitamin levels. Medical Hypotheses. 2013;80:750-755.
818	
819	53. Anderson DD, Woeller CF, Stover PJ. Small ubiquitin-like modifier-1 (SUMO-1)
820	modification of thymidylate synthase and dihydrofolate reductase. Clin Chem Lab Med.
821	2007;45:1760–1763.
822	
823	54. Fox JT, Shin WK, Caudill MA et al. A UV-responsive internal ribosome entry site enhances
824	serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem.
825	2009;284:31097–3108.
826	
827	55. Woeller CF, Fox JT, Perry C et al. A ferritin-responsive internal ribosome entry site
828	regulates folate metabolism. J Biol Chem. 2007;282:29927–29935.

829	
830	56. Lucock M, Beckett E, Martin C, et al. UV-associated decline in systemic folate:
831	implications for human nutrigenetics, health, and evolutionary processes. Am J Hum Biol.
832	2016; doi: 10.1002/ajhb.22929.
833	
834	57. Blount BC, Mack MM, Wehr CM, et al. Folate deficiency causes uracil misincorporation
835	into human DNA and chromosome breakage: implications for cancer and neuronal damage.
836	Proc Natl Acad Sci U S A. 1997;94:3290-3295.
837	
838	58. Serrano MP, Lorente C, Vieyra FE, Borsarelli CD, Thomas AH. Photosensitizing properties
839	of biopterin and its photoproducts using 2'-deoxyguanosine 5'-monophosphate as an
840	oxidizable target. Phys Chem Chem Phys. 2012;14:11657-11665.
841	
842	59. Hirakawa K, Suzuki H, Oikawa S, Kawanishi S. Sequence-specific DNA damage induced by
843	ultraviolet A-irradiated folic acid via its photolysis product. Arch Biochem Biophys.
844	2003;410:261–268.
845	
846	60. Ito K, Kawanishi S. Photoinduced hydroxylation of deoxyguanosine in DNA by pterins:
847	Sequence specificity and mechanism. Biochemistry. 1997;36:1774–1781.
848	
849	61. Benavente CA, Jacobson MK, Jacobson EL. NAD in skin: therapeutic approaches for
850	niacin. Curr Pharm Des. 2009;15:29-38.
851	

852	62. Warburg O, Christian W, Griese A. Wasserstoffübertragendes coferment, seine
853	zusammensetsung und wirkungsweise. Biochem Z. 1935;282:157-165.
854	
855	63. Jacobson MK, Jacobson EL. Discovering new ADP-ribose polymer cycles: protecting the
856	genome and more. Trends Biochem Sci. 1999;24:415-417.
857	
858	64. Durkacz BW, Omidiji O, Gray DA, Shall S. (ADP-ribose) participates in DNA excision
859	repair. Nature. 1980;283:593-596.
860	
861	65. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature.
862	1992;356:356-358.
863	
864	66. Oliver FJ, Menissier-de Murcia J, de Murcia G. Poly(ADP-ribose) polymerase in the
865	cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet. 1999;64:1282-
866	1288.
867	
868	67. Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin
869	structure and transcription by nucleosome binding properties of PARP-1. Cell.
870	2004;119:803-814.
871	
872	68. Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-
873	dependent cell death by apoptosis-inducing factor. Science. 2002;297:259-263.
874	

875	69. Lucock M, Yates Z. Folic acid fortification: a double-edged sword. Current Opinion in
876	Clinical Nutrition and Metabolic Care. 2009;12:555-564.
877	
878	70. Lucock MD, Priestnall M, Daskalakis I, Schorah CJ, Wild J and Levene MI. Non-enzymatic
879	degradation and salvage of dietary folate: Physico-chemical factors likely to influence
880	bioavailability. Biochemical & Molecular Medicine. 1995;55:43-53.
881	
882	71. Ng X, Lucock MD, Veysey M. Physicochemical effect of pH and antioxidants on mono-
883	and triglutamate forms of 5-methyltetrahydrofolate, and evaluation of vitamin stability in
884	human gastric juice: Implications for folate bioavailability. Food Chemistry. 2008;106:200-
885	210.
886	
887	72. Webb AR, Holick MF. The role of sunlight in the cutaneous production of vitamin D3.
888	Annu Rev Nutr. 1988;8:375-399.
889	
890	73. Jacobs HJC, Boomsma F, Havinga E. The photochemistry of vitamin D and tachesterol.
891	Recl. Trav. Chim. Pays-Bas Belg. 1977; 96:113-116.
892	
893	74. Dauben WG, Bauman P. Photochemical Transformations IX. Total structure of
894	suprasterol II. Tetrahedron Lett. 1961;565-572.
895	
896	75. Havinga E. Vitamin D, example and challenge. Experentia. 1973;29:1181-1193.
897	
898	76. Robinson N. Solar Radiation. New York: Elsevier; 1966.

899						
900	77. Holick MF, MacLaughlin JA, Doppelt SH. Regulation of cutaneous previtamin D3					
901	photosynthesis in man: skin pigment is not an essential regulator. Science. 1981;211:590-					
902	593.					
903						
904	78. Lucock M, Yates Z, Glanville T, Leeming R, Simpson N, Daskalakis I. A critical role for B-					
905	vitamin nutrition in human developmental and evolutionary biology. Nutr Res.					
906	2003;23:1463–1475.					
907						
908	79. Hasoun L Z, Bailey SW, Outlaw KK, Ayling JE. Rearrangement and depletion of folate in					
909	human skin by ultraviolet radiation. Br J Dermatol, 2015;doi:10.1111/bjd.13885					
910						
911	80. Borradale D, Isenring E, Hacker E, Kimlin MG. Exposure to solar ultraviolet radiation is					
912	associated with a decreased folate status in women of childbearing age. J Photochem					
913	Photobiol B. 2014;131:90–95.					
914						
915	81. Cabrera S, Benavente D, Alvo M, de Pablo P, Ferro CJ. Vitamin B12 deficiency is					
916	associated with geographical latitude and solar radiation in the older population. J					
917	Photochem Photobiol B. 2014;140:8-13.					
918						
919	82. Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship					
920	between homocysteine metabolism and glutathione synthesis by the transsulfuration					
921	pathway and its regulation by redox changes. Biochemistry. 2000;39:13005-13011.					
922						

923	83. Cheng Z, Yamamoto H, Bauer CE. Cobalamin's (vitamin B12) surprising function as a
924	photoreceptor. Trends in Biochemical Sciences. 2016;41:647-650.
925	
926	84. Lucock M, Glanville T, Ovadia L, Yates Z, Walker J, Simpson N. Photoperiod at conception
927	predicts C677T-MTHFR genotype: a novel gene environment interaction. Am J Hum Biol.
928	2010;22:484-489.
929	
930	85. Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol.
931	2000;39:57–106.
932	
933	86. Jones P, Beckett E, Yates Z, Veysey M, Lucock M. Converging evolutionary,
934	environmental and clinical ideas on folate metabolism. Experimental Research and
935	Hypothesis in Medicine. 2016;1:34-41.
936	
937	87. Beckett EL, Jones P, Veysey M, et al. VDR gene methylation as a molecular adaption to
938	light exposure: historic, recent and genetic influences. Am J of Hum Biol; 2017; In Press.
939	
940	88. Jablonski NG, Chaplin G. Human skin pigmentation as an adaptation to UV radiation.
941	Proc Natl Acad Sci USA. 2010;107:8962–8968.
942	
943	89. Yafei W, Lijun P, Jinfeng W, Xiaoying Z. Is the prevalence of MTHFR C677T polymorphism
944	associated with ultraviolet radiation in Eurasia? J Hum Genet. 2012;57:780–786.
945	

946	90. Jones P, Lucock M, Veysey, M, Jablonski N, Chaplin G, Beckett. Frequency of folate-
947	related polymorphisms varies by skin pigmentation. Am J Hum Biol. 2017; doi:
948	10.1002/ajhb.23079.
949	
950	91. Hochberg Z, Templeton A. Evolutionary perspective in skin color, vitamin D and its
951	receptor. Hormones. 2010;9:307-311.
952	
953	92. Lucock M, Yates Z, Martin C, et al. Vitamin D, folate, and potential early lifecycle
954	environmental origin of significant adult phenotypes. Evol Med Public Health. 2014; 69-91.
955	
956	93. Beckett EL, Yates Z, Veysey M, Duesing K, Lucock M. The role of vitamins and minerals in
957	modulating the expression of microRNA. Nutr Res Rev. 2014;27:94-106.
958	
959	TABLE
960	Table 1: Summary of six light-related phenomena that illustrate the importance of vitamin-
961	light interactions to human biology.
962	
963	FIGURE
964	Figure 1: Integrated overview of how vitamins respond to light.
965	
966	FOOTNOTE
967	Footnote 1: Vieth ²³ points out that although the kidney acts as a classic endocrine gland,
968	producing the hormone $1,25(OH)_2D_3$, the generic descriptor 'vitamin D' per se, should not be
969	linked to the term hormone, although 25(OH)D $_3$ is appropriately termed a prehormone.

Light responsive	Light vulnerable	Filtering and/or protection	UV-related DNA maintenance and repair	Light- related signalling and transduction	Light-vitamin Links to evolution of human phenotypes
Vitamin D (UV-B required for photosynthesis of calciol/cholecalciferol in skin) ^{1,3,72,73}	Folic acid (red cell and serum) ^{4,56,79,80}	β-carotene (skin) ³⁴⁻³⁸	Folic acid $(5,10-$ methylene- H ₄ folate). Needed for dTMP and hence DNA synthesis ^{50,57}	Vitamin D (i.e. via VDR) ^{24,26,31,32}	Vitamin D (linked to evolution of skin depigmentation as humans migrated away from equator) ^{3,85,87,88,89,91}
Photo-transformation of 11-cis –retinal into 11-trans-retinal in vision ^{2,18,19}	Systemic vitamin B ₁₂ may be UV labile. Pharmaceutical cyanocobalamin undergoes photolysis to hydroxo- cobalamin, although vitamin activity is maintained ⁸¹	Vitamin E (tocopherols and tocotrienols) in skin ^{39,43}	Folic acid (5- methyl- H ₄ folate). Needed for <i>de</i> <i>novo</i> methionine synthesis and hence DNA- CpG methylation ^{50,51}	Vitamin A (11-cis- retinal) ^{2,18,19}	Folic acid (linked to evolution of pigmentation at and approaching equatorial latitudes) ^{56,85,86,88,89,90}
Vitamin B_3 (NAD ⁺ response to genomic damage) ⁶¹⁻⁶⁸	Vitamin B_1 and B_2 in food ³	Vitamin C (skin) ⁴¹⁻⁴³	Vitamin B ₃ (NAD ⁺) ⁶¹⁻⁶⁸	Folic acid (5,10- methenyl- H_4 folate) ^{5,9,10}	Vitamin-gene-UV interactions may influence embryogenesis ^{3,4,84}
	Wavelengths >315nm can degrade vitamin D vitamers ⁷²	Lutein (blue filter in eye) ⁴⁴	Antioxidant vitamins (vitamin C, E, carotenoids) ⁴³	*Vitamin B ₁₂ ⁸³	UV-related vitamin D formation and VDR methylation acts as molecular adaptation to light exposure ⁸⁷
		Zeaxanthin (eye) ⁴⁴	Transcription factors (vitamins A, B, D, E) ^{17,24,67,93}	Vitamin B ₂ (FAD) ^{9,10}	
			SHMT expression/post- translational SUMOylation of TS (promotes dTMP synthesis in response to UV exposure) ⁵⁴		

Integrated overview of how vitamins respond to light.

304x226mm (300 x 300 DPI)